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Abstract

We present a new simulation-based American option pricing method, Delta least

squares Monte Carlo (Delta LSM). Whereas the classical LSMmethod from Longstaff

& Schwartz (2001) uses only the discounted payoff to learn the continuation value,

Delta LSM uses both the discounted payoff and its derivative (Delta) to estimate

regression coefficients. The Delta LSM is straightforward to implement and comes

at little extra numerical cost. It is quite literally an add-on to the LSM method.

Our numerical experiments show that irrespective of your speed/safety preference

– and robustly across market scenarios – Delta LSM gives a marked improvement

over classical LSM.

Keywords: American option pricing, Longstaff-Schwartz least squares Monte Carlo,

Delta regularization.
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1 Introduction

Most exchange traded options are American-style, i.e. they give their holders early ex-

ercise rights. However, even for the simplest product (an American put option) under

minimal realistic market conditions (interest rate > dividend yield ≥ 0) and the most

sanitized mathematical model (Geometric Brownian motion as dynamics for the underly-

ing and frictionless continuous trading), there is no closed-form expression for neither the

”right” (=unique arbitrage-free) price, nor for the ”right” (=optimal) exercise strategy. A

plethora of of articles have developed specific-to-possibly-general theoretical representa-

tions and numerical methods, many of which are very clever and efficient; to our knowledge

Andersen, Lake &Offengenden (2016) is the gold standard. That said, most production

implementations in the financial industry use a general-to-specific approach with an out-

set in the least squares Monte Carlo method (LSM) presented in Longstaff & Schwartz

(2001), because of its, well, generality. Again, a full and fair review of the underlying

body of literature is beyond the scope of this paper – and arguably its authors. So we will

simply refer to Becker, Cheridito, Jentzen &Welti (2021) and Lind (2022) for treatments

of the state-of-the-art using neural network regression to handle multi-dimensionality but

at the cost of analytic tractability such as nonexistent theoretical convergence results.

Our aim with this paper is to introduce, describe, and investigate an analytical tractable

method that can be implemented as an add-on to any LSM-type algorithm. Specifically,

the method (section 2) relies on the Delta regularization proposed in Huge & Savine (2020)

and applied to European option problems in Frandsen, Pedersen &Poulsen (2022). The

Delta LSM extends the classical least squares Monte Carlo method1 from Longstaff &

Schwartz (2001) by also using the derivative of the discounted cash flow to find the opti-

mal stopping strategy. The additional algorithmic complication and computational cost

of including the derivative of the discounted payoff in the loss function amount only to

that of adding two matrices. This is a relatively small cost since the heavy computation in

1We shall write ’LSM’ as shorthand, but ’LSM method’ in readable text to improve the flow. By
interpreting M as coming from ’Monte’ rather than ’method’, this technically isn’t a pleonasm. The first
letter equivalence of ’least squares’ and ’Longstaff & Schwartz’ is a mnemonic serendipity.
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least-squares lies in the matrix inversion. Our experimental results (section 3) show that

in return for this small additional complexity, the Delta LSM method delivers – robustly

across market scenarios – better results than LSM irrespective of whether your preference

is for speed (the in-sample bias and lower bound valuation is improved, particularly for

small samples) or for safety (it gives much tighter upper bounds when run trough the

Primal-Dual-algorithm from Andersen & Broadie (2004)).

2 Delta LSM for American options

The least squares Monte Carlo method as presented in Longstaff & Schwartz (2001) is

ubiquitous for the valuation of anything involving stopping decisions, be that American-

style financial contracts or real options; the American option in our language. Structurally,

the method can be split up into four parts:

1. Simulation of paths.

2. Backward recursion to estimate regression coefficients (i.e. parameters minimizing

some loss function – here of least squares type as suggested by the name) determining

the optimal exercise decision at each time point.

3. Forward pass: Simulate paths as in (but independently of) step 1 and use the

regression coefficients from step 2 to decide when to exercise the American option

– hopefully close to optimally.

4. Valuation: Average over the discounted payoffs from the decisions in step 3 to

estimate the American option price.

The Delta LSM method, which we shall describe in more detail in the following subsec-

tions, is an extension to step 2 where the loss function is regularized using the Delta of

the continuation value of the American option, i.e. the continuation value’s sensitivity

wrt. the underlying, a key point being that the derivative is available from the simulated

paths. The regularization reduces variance but unlike other techniques such as ridge or

lasso regression it does not introduce any bias.
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2.1 Simulation of paths

We consider a Black-Scholes model with a single, dividend-free stock, i.e. under the risk-

neutral measure Q the stock price dynamics is

dSt = rStdt+ σStdWt, (1)

where both the risk-free interest rate r and the volatility σ are constant. Working in

such a sanitized, one-dimensional, log-normal setting is convenient for demonstrating the

central concepts of the methods that are to follow. However, it is not a deal-breaker; we

are not shoving any rabbits into any hats here – as we will explain along the way.

For any collection of time-points ti’s, paths of the stock price can be simulated with-

out discretization error

Sti+1
= Stie

(r− 1
2
σ2)(ti+1−ti)+σ

√
ti+1−tiZi+1 , (2)

where the Zi’s are independent and N(0, 1). Using the explicit form from equation (2)

repeatedly, we get that the derivative of any future value of the process wrt. its initial

condition, which we call the path derivative, is

∂Stj

∂Sti

=
Stj

Sti

for i ≤ j. (3)

2.2 Backward induction and Delta regularization; LSM and Delta

LSM

First, to avoid having to go down too many technical rabbit holes, we will in the follow-

ing assume that our American option is strictly speaking Bermudan, i.e. it can only be

exercised on a discrete, finite set of time points {t0 := 0, t1, . . . , tN−1, tN := T}, an ele-

ment of which is generically referred to as ti. However, as we are free to choose both the

number of time points and their spacing, we write American anywhere it does not confuse.
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The backward induction algorithm to value the American option starts at the expira-

tion (tN = T ) of the option and works recursively backward in calendar time. For each

point on the timeline, we decide whether we exercise the option or hold the option. If we

arrive at the expiration date T with a not-yet-exercised option, our choice is trivial: We

exercise the option if it is in-the-money, out-of-money options expire worthless.

Standing at a decision point ti with a not-yet-exercised option, we have to compare what

we get from exercising the option now, the intrinsic value, to the value of keeping it alive,

the continuation value. Note that our choice is neither ”now or never”, nor ”now or at

expiration”, but ”now or maybe later”. Mathematically, we can express the value of the

American option, say V A, via a Bellman-type equation

V A
ti

= max

h(Sti)︸ ︷︷ ︸
=:IVi

, e−r(ti+1−ti)EQ
ti (V

A
ti+1

)︸ ︷︷ ︸
CVi

 , (4)

where h is the payoff function of the option (so h(x) = (K−x)+ for a put, h(x) = (x−K)+

for a call). The first term inside the curly braces is the intrinsic value, the second term

is the continuation value, denoted in shorthand CVi. Computing the continuation value

poses a numerical challenge as it involves the expectation of the option value at a future

time conditioned on today’s information set. This calculation plays well with backward

recursive calculations in a tree, lattice, or grid model. But not so well in the situation with

individual simulated stock price paths. This is where the LSM method from Longstaff &

Schwartz (2001) comes into play.

By repeated use of equation (4), we can write

CVi = max
τ∈Tti+1;T

EQ
ti (e

−r(τ−ti)h(Sτ )), (5)
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where Tti+1;T denotes the set of stopping times with values in {ti+1, ti+2, . . . T}. From

eq. (5) we see, we have to calculate the (risk-neutral) expected discounted payoff from

exercising optimally in the future. So we can focus on the pay-off from the optimal exercise

strategy along the specific path, no reference is made to the V A-process. By the strong

Markov property of S, the conditional expectation on the right-hand side of the equation

(5) is a function solely of Sti , albeit an abstract/general/’very unknown’ one. So what we

do is approximate it parametrically by a function Φi of the form

Φi(x) =
M∑
j=0

ϕj(x)βj(i) =: ϕ(x)β(i), (6)

where the ϕj’s are some (common across time points, i’s) basis functions that we the

modellers choose (and start counting from 0 for later intuitive ease and stack into a

row vector for compact notation) and the βj(i)’s are parameters, that it is our task to

estimate (for each time point). To put a face on the abstract, think of the basis functions

as the monomials, i.e. ϕj(x) = xj. Importantly, Φi is linear in parameters – but not in

x. Supposing for a minute that we have estimated Φi, then for each path (say the l’th)

we know if we should exercise, namely if h(Sl
ti
) > Φi(S

l
ti
). Working recursively backward,

which includes updating the estimated optimal exercise strategy, determines the optimal

exercise strategy along each path. The final step – parameter estimation – comes from (for

each time point) viewing (for each path; say there are L of them) the discounted realized

pay-off from following the (previously estimated) subsequently optimal strategy as the

outcome of a random variable whose expected value is the right-hand side of equation (5).

This – compactly written – gives us a system of equations

e−r(τ∗i −ti)h(Sτ∗i
)︸ ︷︷ ︸

L×1

= ϕ(Sti)︸ ︷︷ ︸
L×(M+1)

β(i)︸︷︷︸
(M+1)×1

+noise︸ ︷︷ ︸
L×1

, (7)

where we write τ ∗i for the L-vector whose l’th coordinate is the path l, subsequently

optimal exercise time as seen from time ti (i.e. these τ
∗’s are updated as we work our way

backward). We then estimate the time ti parameters by minimizing some loss function of
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the noise, the sum of squares being a natural choice. So (with ||x||2 = x⊤x for a vector

x), LSM parameters – or regression coefficients – are estimated as

β̂(i) = argmin
β(i)∈RM+1

||e−rτ∗i h(Sτ∗i
)− ϕ(Sti)β(i)||2, (8)

i.e. by the standard ordinary least squares formula

β̂(i) = (ϕ⊤ϕ)−1ϕ⊤e−r(τ∗i −ti)h(Sτ∗i
). (9)

2.2.1 Delta regularization

Note that equation (6) tells us that the x-derivative of Φi is

∂

∂x
Φi(x) =

M∑
j=0

ϕ′
j(x)βj(i) =: ϕ′(x)β(i). (10)

This means that in a perfect world – i.e. if the continuation value has the same func-

tional form as Φi and we know the parameters –we would also know the derivative of the

continuation value wrt. to the underlying – the Delta. It is particularly neat that the

expression in equation (10) is also linear in the parameters, However, the approach in the

following also works with more complicated Φi-functions as long as we have an efficient

way of calculating their derivatives (wrt. the underlying). In (dual) neural networks this

is exactly what (clever use of) the backpropagation algorithm delivers, which is a key in

the differential machine learning approach introduced in Huge & Savine (2020) and Huge

& Savine (2021).

Suppose momentarily that we can simulate (at each time point) a vector of random

variables, say ZS(i), whose mean is Delta (eq. (10)). We use this extra information by

estimating the regression coefficients β from a regularized loss function

Loss = ||e−r(τ∗i −ti)h(Sτ∗i
)− ϕ(Sti)β(i)||2 + λ||ZS(i)− ϕ′(Sti)β(i)||2, (11)
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where λ =
||−e−r(τ∗i −ti)h(Sτ∗

i
)||2

||ZS(i)||2
is chosen such that the two terms in the loss function are

of roughly the same size. Minimizing the regularized loss function in equation (11) (see

Appendix appendix A) over β, we get the regression coefficients β̂,

β̂(i) = (ϕ⊤ϕ+ λ(ϕ′)⊤ϕ′)−1(ϕ⊤(e−r(τ∗i −ti)h(Sτ∗i
)) + λ(ϕ′)⊤ZS(i)). (12)

Comparing equation (12) to equation (9) we see that Delta LSM is an add-on to LSM in

a very literal sense.

Of course, the usefulness of the regularization approach just described hinges critically on

us being able to produce – i.e. simulate – such mean-Delta ZS-variables without throwing

the baby out with the bathwater, computation time-wise. For this final piece of the puzzle

we proceed thus:

∆i :=
∂

∂Sti

(CVi) =
∂

∂Sti

EQ
ti (e

−r(τ∗i −ti)h(Sτ∗i
))

= EQ
ti

(
e−r(τ∗i −ti)

∂

∂Sti

h(Sτ∗i
)

)
= EQ

ti

(
e−r(τ∗i −ti)

∂Sτ∗i

∂Sti

∂h(Sτ∗i
)

∂Sτ∗i

)
= EQ

ti

(
e−r(τ∗i −ti)

∂Sτ∗i

∂Sti

h′(Sτ∗i
)

)
,

where h′ is the derivative of the pay-off function – possibly understood in a generalized

(or weak) sense, meaning that it is something that behaves as a derivative should when

placed (possibly next to ’something nice’) under an integral sign. For call and put options

the generalized derivatives are indicator (or Heaviside) functions,

h′(x) =

1x>K if call

−1K>x if put.

(13)

From equation (3) we get the path derivative in the Black-Scholes model,

∂Sτ∗i

∂Sti

=
Sτ∗i

Sti

. (14)
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This expression allows for one-step simulation and it’s specific to the Black-Scholes model.

With other, more complicated, processes for the underlying, the idea will (often) also work,

but something like equation (14) will have to be applied locally in time along each path,

see Giles & Glasserman (2006). Putting all this together, we get our ZS-variables,

ZS(i) =
Sτ∗i

Sti

h′(Sτ∗i
). (15)

Note that Delta LSM the regularization method described above does not add any bias

to the estimator but reduces variance, we get a better estimate of the conditional expec-

tation without having to qualify ”better” by some bias-variance-trade-off as is usual for

regularization methods.

2.3 Forward pass

In the backward induction step, we are using future payoffs as the response variable in

the regression to estimate the continuation value. This creates a positive bias (i.e. we

overvalue the American option) if we use the backward paths themselves to estimate the

American option price; an in-sample or a foresight bias. The larger the sample for the

backward induction is, the smaller the bias will be. But for a given sample size (say 10,000

paths) it is far from obvious, what the magnitude of the bias is because of the recursive

nature of the backward induction. Effects that are small individually may propagate in

nasty ways; studying this is a key part of proving rigorous convergence results about the

LSM method, see for instance Stentoft (2004).

However, a simple and computationally cheap way to alleviate this effect is to run an

out-of-sample experiment or a forward pass where we simulate a new independent sam-

ple of paths, say K of them. For any path, say the k’th, we march forward in time to

decide the optimal exercise point, which is the first time that intrinsic value exceeds the

continuation value (and if that does not happen, we get 0 at T ), i.e.

τ̂ k = min{min
i
{ti|h(Sk

ti
) > ϕ(Sk

ti
)β̂(i)}, T} (16)
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which is possible because we have estimated the regression coefficients (β̂(i)) from the

in-sample backward induction. Because no matrix inversion is involved, having a large

number of paths in the forward pass is computationally much cheaper than having the

same number of paths in the backward induction – even without exploiting the embar-

rassingly parallel nature of the forward pass.

2.4 Valuation

The final step is to average the discounted optimal payoffs from the forward pass to get

an estimate of the American option price,

V̂ A
0 =

1

K

K∑
k=1

e−rτ̂kh(Sk
τ̂k). (17)

The early exercise boundary from the backward induction step gives some stopping strat-

egy. The true American option price comes from the stopping strategy that maximizes the

discounted expected payoff. Hence, this step will give us a lower bound for the American

option price of large (but cheap) K. Because these out-of-sample-paths are independent

and the β’s are fixed, we can safely calculate the standard error of such a price estimate

with basic statistics.

3 Experimental results

In this section, we compare the performance of the Delta LSM method to that of the

standard LSM method for American put option valuation in the Black-Scholes model. A

simple example, but still a non-trivial one, as no truly closed-form expression for the put

option price is known. As a robustness check, we do this across an ensemble of contract

and market parameters. We first demonstrate that our implementation’s in-sample LSM

results closely match those from the original Longstaff & Schwartz paper – as of course,

they should. These benchmark cases use a rather large number of in-sample paths (50,000-

100,000). To the naked eye, the differences between LSM and Delta LSM results (both
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in- and out-of-sample) for the benchmark cases are small. However, we demonstrate that

while yes, benchmark case differences are small enough to ignore in practical applications,

the differences are (i) systematically in favour of the Delta LSM method for benchmark

in-sample sizes, (ii) dramatically in favour of the Delta LSM for smaller in-sample sizes.

More specifically, we find that:

1. 216 = 65, 536 in- and out-sample paths are overkill for both LSM and Delta LSM

– but needed for a lazy implementation that uses the same in- and out-of-sample

paths.

2. Lowering the number of in-sample paths to 213 = 8, 192 (which seems to be industry

standard) – i.e. with 8x lower runtime – both the LSM and Delta LSM give results

whose accuracy are acceptable for practical applications.

3. With 210 = 1, 024 in-sample paths – a reduction of 8x paths – the Delta LSM method

still gives results that are sufficiently accurate for practical use, but standard LSM

method emphatically does not.

4. With 218 = 262, 144 in-sample and out-of-sample paths – Delta LSM exhibits a

significantly tighter duality gap, showing a closer-to-optimal exercise strategy even

when using 262, 144 paths.

3.1 What do you bench?

Table 1 evaluates the Delta LSM against the classical LSM algorithm. Similarly to the

original Longstaff and Schwartz paper, we use third-degree monomials (ϕ(x) = (1, x, x2, x3))

and only in-the-money paths for regressions (for out-of-the-money options, the exercise

decision – don’t! – is trivial). We use multi-dimensional Sobol sequences across paths,

meaning that there are technical reasons for preferring numbers of paths that are powers

of two. We conduct both in-sample and out-of-sample mean valuation of the American

put options in Longstaff & Schwartz (2001) using 100 runs with 216 = 65, 536 in-sample

and out-of-sample paths for each run. In each example, we use a strike price K = 40

and risk-free rate r = 6%, but as a robustness check we explore various scenarios for
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expirations T ∈ {1, 2}, volatilities σ ∈ {0.2, 0.4}, and spot prices S ∈ {36, 38, 40, 42, 44}.
These are the exact same scenarios as used in Table 1 in the original paper by Longstaff

and Schwartz. In Appendix B we demonstrate that our in-sample LSM results closely

match those from the original paper.
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Table 1: Comparison: LSM and Delta LSM for American Puts

In-sample Out-of-sample

Spot σ T CRR LSM IS Delta LSM IS LSM OFS Delta LSM OFS

36 0.2 1 4.478 4.476 4.477 (0.005) 4.476 (0.005) 4.477 (0.005)
36 0.2 2 4.840 4.835 4.838 (0.006) 4.835 (0.006) 4.839 (0.007)
36 0.4 1 7.101 7.100 7.101 (0.010) 7.098 (0.010) 7.100 (0.011)
36 0.4 2 8.507 8.504 8.504 (0.013) 8.501 (0.013) 8.504 (0.015)

38 0.2 1 3.250 3.249 3.250 (0.005) 3.248 (0.005) 3.250 (0.006)
38 0.2 2 3.745 3.739 3.741 (0.006) 3.740 (0.006) 3.744 (0.006)
38 0.4 1 6.148 6.147 6.146 (0.010) 6.143 (0.010) 6.146 (0.008)
38 0.4 2 7.668 7.665 7.665 (0.014) 7.664 (0.014) 7.667 (0.014)

40 0.2 1 2.314 2.312 2.313 (0.005) 2.313 (0.005) 2.314 (0.005)
40 0.2 2 2.885 2.881 2.883 (0.006) 2.881 (0.006) 2.884 (0.006)
40 0.4 1 5.312 5.311 5.311 (0.009) 5.308 (0.010) 5.310 (0.010)
40 0.4 2 6.917 6.917 6.917 (0.012) 6.911 (0.011) 6.914 (0.012)

42 0.2 1 1.617 1.616 1.616 (0.004) 1.615 (0.004) 1.616 (0.004)
42 0.2 2 2.213 2.211 2.212 (0.005) 2.209 (0.005) 2.211 (0.005)
42 0.4 1 4.583 4.583 4.582 (0.009) 4.580 (0.009) 4.581 (0.009)
42 0.4 2 6.245 6.242 6.241 (0.013) 6.240 (0.014) 6.242 (0.015)

44 0.2 1 1.110 1.110 1.110 (0.004) 1.108 (0.004) 1.109 (0.004)
44 0.2 2 1.690 1.689 1.690 (0.006) 1.687 (0.006) 1.690 (0.005)
44 0.4 1 3.948 3.947 3.946 (0.010) 3.945 (0.010) 3.947 (0.009)
44 0.4 2 5.642 5.638 5.638 (0.013) 5.638 (0.013) 5.642 (0.013)

Price estimate comparison of American-style put options for in-sample run (step 2: backward induction)
and for out-of-sample run (step 3: forward pass) for both LSM and Delta LSM. In this comparison, the
parameters are strike price K = 40 and risk-free rate r = 0.06. The reported numbers for both the
in-sample and out-of-sample are the mean and standard error (s.e.) of 100 runs with 216 paths for each
run. The CRR column is the benchmark price calculated in a 2,000-steps-per-year Cox-Ross-Rubinstein
lattice.
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Relative error comparison LSM and Delta LSM
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Figure 1: Relative errors in basis points (y-axis) for the price estimates in Table 1. The
(categorical) x-axis is the scenario number according to the row number in the table.
Dashed is out-of-sample, fully drawn is in-sample. Purple is LSM, blue is Delta LSM.
Horizontal lines show averages across scenarios.

We have included results in tabular format to facilitate replication and as an homage

to the original paper. However, the finer patterns are difficult to see with the naked eye;

numbers look pretty similar along each row. So we now zoom in by looking at relative

errors – or biases – in basis points,

relative errori,j = 10, 000
price estimate(method i, scenario j)− true price(scenario j)

true price(scenario j)
,

where the method indicator i ∈ {LSM,Delta LSM} ⊗ {in-sample, out-of-sample}, and

scenario counter j ∈ {1, 2, . . . , 20} refers to the row number in Table 1. Results are

presented in Figure 1, which is arguably a bit ’busy’, but there is method to the madness:

• On x-axis is the scenario number (row number in Table 1) and on the y-axis is the

relative error in basis points.
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• Purple is LSM, blue is Delta LSM.

• Dashed curves are in-sample results, and fully drawn curves are out-of-sample re-

sults. (For graphical legibility, we connect across the categorical x-variable.)

• Horizontal lines show averages across scenarios, dashed for in-sample, fully drawn

for out-of-sample.

The big picture: We deem results to be sufficiently similar across scenarios for us only to

comment on their averages, the horizontal lines, in the following. All methods produce

errors that are less than 9.7 basis points in absolute value. Typical bid-ask spreads for the

options we consider are of magnitude 100 basis points, so all methods produce numbers

that are well within range for practical use.

The finer points and patterns: In-sample, Delta LSM and LSM give very similar price

estimates (the difference between the two dashed vertical lines is 1.0 basis points). In-

sample both methods give negatively biased results, about −5 basis points. The sign

of the bias is not apriori clear, as there are conflicting effects in play. By using (only)

monomials up to degree three as basis functions, we are restricting our exercise strategies

and losing flexibility regarding the early exercise boundary – albeit in a complicated way.

And since the true price comes exactly from the exercise strategy that maximizes the

expected discounted payoff from following that strategy, we have a negative source of

bias. However, a source of positive bias is that in-sample we use the exact same paths to

evaluate the performance of our exercise strategy as we used to determine it; the smaller

the sample size, the more pronounced the bias will be. The results show that with ∼
50,000 paths, the overall effect is negative. (One cannot simply, yet, conclude, that the

in-sample bias is negligible; the small negative bias might come as a sum of a large

positive and a ’large’ negative number.) Let us now turn to the out-of-sample results.

We know that this should be negatively biased – which is indeed what we see. But now

there is a visibly clear difference between LSM and Delta; LSM has a bias of −9.7 basis

points, Delta LSM only −4.1 basis points. Any in-sample estimation noise/inaccuracy will

be into negative bias out-of-sample. This shows that the Delta LSM gives more accurate
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estimates of the optimal exercise strategy. Notice further the difference between in-sample

and out-of-sample results is minuscule for Delta LSM (the dashed and fully drawn blue

horizontal lines almost coincide; 0.02 basis point difference) but not for LSM (4.55 basis

points difference between the purple lines). So not only does Delta LSM give us a better

strategy out-of-sample, but it is also trustworthy price-wise in-sample, whereas LSM is

more unrealistically optimistic about its performance.

3.2 Duel: Size matters

Using the same experimental design as in the previous section, we now investigate what

happens when we decrease the in-sample sample size; first from 216 down by a factor of

8 to 213 = 8, 192(∼ 10, 000), which is commonly used in practice, and then down by a

further factor 8 to 210 = 1, 024(∼ 1, 000), a nice, (almost) round and intuitively large

number.

The results are shown in Figure 2. The left-hand panel is Figure 1 reproduced for compari-

son. Looking at the 8,192-paths middle panel, we see that all methods still give practically

usable results (absolute biases less than 22 basis points). But while the performance of

Delta LSM is near-as-makes-no-difference unchanged from the earlier 65,536-paths case,

the LSM is starting to show small-sample shortcomings. Increased positive small-sample

bias leads to a price estimate closer to the true one, but this is a result of two wrongs

making a right; using LSM the estimated exercise strategy performs considerably worse

than that from the Delta LSM. Turning to the 1,024-paths right-hand panel we see that

the positive small-sample bias makes the Delta LSM visibly optimistic about its perfor-

mance (bias +14 basis points), but that using its estimated exercise strategy still gives

acceptable performance (out-sample-bias −36 basis points). However, for LSM, things are

not well. In-sample it has a bias of +135 basis points, while the strategy’s out-of-sample

performance is −89 basis points. To see why this is dangerous consider this simple ex-

ample: The true price of the option is 10. You can buy it at 10.05 and sell it at 9.95 – a

bid-ask spread of 100 basis points. Using your in-sample LSM estimate, you reckon that

the true value of the option is 10.135. So you buy the option at 10.05, short the replicating
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Figure 2: Relative pricing errors across scenarios for different in-sample sample sizes. Each
panel corresponds to a different size, indicated on its top. On the y-axes are relative pricing
errors (biases) in basis points, on the x-axes are scenario numbers (the initially deep out-
of-the-money scenarios 17-20 have been excluded from the graphs because relative errors
are very sensitive to the treatment of lacking in-the-money paths). Purple is for LSM,
blue is for Delta LSM. Dashed curves show in-sample performance, fully drawn curves
show out-of-sample performance (estimated from 65,536 paths). Horizontal lines indicate
averages across scenarios with the same dashed/full convention.

portfolio for your estimated optimal strategy, and follow said strategy for exercising the

option that you hold – all in the firm belief that that will give you an arbitrage profit of

10.135 − 10.05 = 0.085. However, the −89 basis points out-of-sample performance tells

us that the expected discounted payoff from following your estimated optimal strategy is

only 9.91. So rather than making 0.085 for sure, you will lose 0.14 on average (and there

will even be some randomness to your loss).
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3.3 Dual: Tightly bound

Even with an infinite number of out-of-sample paths, the LSM and the Delta LSMmethods

will only produce a lower bound on the American option price. Whether or not that is

close to the true price depends on the problem at hand, and on the choice (number and

functional form) of basis functions. Suppose that for some reason safety is our main

concern; it is really important for us that we have both upper and lower bounds for

the American option price. The primal-dual algorithm from Andersen & Broadie (2004)

provides a method to turn a lower bound (and its associated exercise strategy) – be that

from LSM or Delta LSM – into an upper bound on the arbitrage-free price of the American

option. The primal-dual algorithm goes in three steps:

1. Estimate an optimal exercise strategy τ̂ using a primal algorithm such as Delta LSM

or LSM, which gives a lower bound of the true price

V̂ A
0 =

1

K

K∑
k=1

e−rτ̂kh(Sk
τ̂k) ≤ sup

τ∈T 0,T

EQ(D0,τhτ ), (18)

where for compactness’ sake we set Dt,u = e−r(u−t).

2. Use the exercise strategy, to derive an upper bound by nested simulation:

• Simulate Kouter paths; for each path k′ do:

– If τ̂ k
′
(ti) instructs us to exercise, then set τ̂ k

′
(ti) = ti and do the following:

∗ Set V̂ ′
ti
= D0,tihti

∗ Simulate Knested paths (starting from the situation at ti and denote

each path k∗ = 1, 2, . . . , Knested) to estimate the value instructed by

the optimal stopping time τ̂i+1 from ti+1 to expiration T :

EQ
ti (V̂

′
ti+1

) ≈ 1

Knested

Knested∑
k∗=1

D0,τ̂i+1
h(Sk∗

τ̂i+1
), (19)

where to streamline notation, we suppress the k dependence on τ̂i+1.

– If τ̂ k
′
(ti) instruct continuation, then τ̂ k

′
(ti) > ti and do the following
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∗ Simulate Knested paths to estimate:

V̂ ′
ti
= EQ

ti (V̂
′
ti+1

) ≈ 1

Knested

Knested∑
k∗=1

D0,τ̂ti+1
h(Sk∗

τ̂ti+1
) (20)

– Build the martingale strategy:

M̂ ′
ti+1

= M̂ ′
ti
+ V̂ ′

ti+1
− EQ

ti [V̂
′
ti+1

], with M̂ ′
t0
= 0.

The martingale M̂ ′ is our estimate of the optimal martingale of path k′

out of the set of right-continuous martingales Mt,0 starting at zero2.

3. Averaging over our estimates of the optimal martingale for each outer path k′ to

construct the upper bound of the American option:

sup
τ∈T t,T

EQ
t [Dt,τh(Sτ )] ≤ inf

M∈Mt,0

EQ
t [ sup

t≤u≤T
(Dt,uh(Su)−Mu)] (21)

≈ 1

Kouter

Kouter∑
k′=1

max
u∈{t,T}

(
Dt,uh(S

k′

u )− M̂ ′
u

)
. (22)

We use the dual algorithm to construct both lower and upper bound for American put

options with expiry T = 2, strike K = 40, volatility σ = 0.4, and risk-free rate r = 0.06

across spot-prices S ∈ {36, 38, 40, 42, 44}. In Figure 3, the duality gap between the lower

and upper bound is shaded yellow, and the benchmark price is cyan. (We provide the full

table of lower and upper bound prices across all the scenarios in Table 2.)

To construct the lower and upper bound, we use 218 Sobol paths for the primal algorithm

(LSM or Delta LSM), 211 outer Sobol paths, and 2000 nested non-Sobol paths.

Across all spot prices, we see a tighter duality gap for Delta LSM in Figure 3, as a result of

a closer-to-optimal exercise strategy using Delta LSM, even with the use of 218 = 262, 144

in-sample and out-of-sample paths. The duality gap sheds light on the benefit of using

2The construction comes from the Doob-Meyer decomposition, however, let’s not got struck on math-
ematical formality
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Figure 3: Comparison of lower and upper bound using LSM and Delta LSM
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Price estimate comparison of American-style put options using the primal-dual algorithm for both LSM
and Delta LSM using a cubic polynomial as basis. In this comparison, the parameters are strike price
K = 40, the expiry T = 2, the volatility σ = 0.4, and risk-free rate r = 0.06. To generate the numbers,
we run 218 paths for the primal algorithm, 211 for the outer paths in the dual algorithm, and 211 inner
paths in the dual algorithm. The CRR is the benchmark price and the lines are linearly interpolated.
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Delta LSM on bigger sample sizes, challenging the notion of marginal benefits as suggested

in sections 3.1 and 3.2. In the absence of a convergent lattice method, Delta LSM stands

out by providing a markedly improved estimate of the range of true value by giving a

tighter no-arbitrage bound.

4 Conclusion

In this paper we have described and tested (with favorable results) the Delta LSM method

which enhances the classical LSM method by use of the simulated derivative of the contin-

uation value. While this is not the be-all – and certainly not the end-all – of simulation-

based American option pricing, it is a cheap-in-several-ways method that can easily – and

without any downside risk that we are aware of – be added on to existing domain-specific

pricing methods and libraries.
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A Optimal Regression Coefficients for Delta LSM

To solve a regularized least squares problem of the form

argmin
β

(
||Y − ϕβ||2 +

∑
j

λj||Zj − ϕjβ||2
)
, (23)

we differentiate the expression inside the large parentheses and put it equal to zero

∂

∂β

(
Y ⊤Y − Y ⊤ϕβ − (ϕβ)⊤Y + (ϕβ)⊤(ϕβ)

)
+2
∑
j

λj

(
Z⊤

j Zj − Z⊤
j ϕjβ − (ϕjβ)

⊤Zj + (ϕjβ)
⊤(ϕjβ)

)
= −ϕ⊤Y + ϕ⊤ϕβ +

∑
j

λj(−ϕ⊤
j Zj + ϕ⊤

j ϕjβ) = 0,

so that

β̂ =

(
ϕ⊤ϕ+

∑
j

λjϕ
⊤
j ϕj

)−1

(ϕ⊤Y +
∑
j

λjϕ
⊤
j Zj). (24)
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B Comparison of Tables 1

As a sanity check, in Figure 4 we compare the results in our Table 1 to those reported

in Table 1 in the original Longstaff & Schwartz-paper. The short version: We are quite

happy with the results.

The longer version: European put option prices calculated from the Black-Scholes for-

mula (which we don’t actually report in our Table 1) are spot on (top left panel). An

absolute minimal requirement. For the ’true’ 50-dates Bermudan option prices (top right

panel), which we calculate with a Cox-Ross-Rubinstein binomial model and Longstaff and

Schwartz by a finite difference method, there are some last (of three) decimal discrepan-

cies. We have no definite explanation for this, but deem it to be unimportant in mag-

nitude. It should be noted that the difference between the 50-dates-per year Bermudan

option price and ’truly continuously exercisable’ American option price is clearly visible

(top right panel) and of non-negligible magnitude (bottom left panel) – which is why we

compare to (our) Bermudan prices in subsequent analysis. The bottom left panel shows

that there is some variation in reported in-sample LSM price estimates, but nothing that

appears systematic or more pronounced that what we would expect from the estimated

standard errors. Finally, the bottom right panel shows the ratio of reported in-sample

standard errors for LSM price estimates. Some variation here is inevitable because for

each parameter combination, the result reported by L&S is based on a single run with

105 paths. Our results are based on 100 runs each with 216 = 65, 536 paths (there are

Sobol simulation reasons for us using a power of two). But we would expect the average

of standard errors ratios to be
√

216/105 = 0.81 – which near-as-makes-no-difference is

what we see (the black dashed line vs. the fully drawn blue one).
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Figure 4: Comparison of our Table 1 results to those reported in Table 1 in the origi-
nal Longstaff & Schwartz-paper. The experiment numbers on the x-axes correspond to
the parameter combinations in Table 1 indexed by row number. The top left panel are
differences in European options prices. In the top right panel, the blue circles are dif-
ferences between L&S’s reported 50-dates-per-year Bermudan finite difference prices and
our calculations from prices from a 2000-steps-per-year CRR model. The orange pluses
are differences between CRR Bermudan and American options prices. Dashed horizontal
lines are averages over the 20 experiments. In the bottom left panel, the circles show
differences between reported LSM in-sample estimated option prices. The vertical lines
are +/- L&S’s reported standard error and the dashed orange horizontal line is the one
from from the top right panel. In the bottom right panel, the circles are the ratios of
reported in-sample standard errors, with the dashed black line showing their average, and
the blue line indicating what we’d expect this to be,

√
216/105 = 0.81.

25

Electronic copy available at: https://ssrn.com/abstract=4788612


	Introduction
	Delta LSM for American options
	Simulation of paths
	Backward induction and Delta regularization; LSM and Delta LSM
	Delta regularization

	Forward pass
	Valuation

	Experimental results
	What do you bench?
	Duel: Size matters
	Dual: Tightly bound

	Conclusion
	Optimal Regression Coefficients for Delta LSM
	Comparison of Tables 1 

